ГИРОСКОП (от греч. gyreuо - кружусь, вращаюсь и skopeo - смотрю, наблюдаю) - быстровращающееся симметричное твёрдое тело, ось вращения (ось ) к-рого может изменять своё направление в пространстве. Свойствами Г. обладают вращающиеся небесные тела, артиллерийские снаряды, роторы турбин, устанавливаемых на судах, винты самолётов и т. п. В совр. технике Г.- осн. элемент всевозможных гироскопич. устройств или приборов, широко применяемых для автоматич. управления движением самолётов, судов, торпед, ракет и в ряде др. систем гироскопич. стабилизации, для целей навигации (указатели курса, поворота, горизонта, стран света и др.), для измерения угловых или поступат. скоростей движущихся объектов (напр., ракет) и во мн. др. случаях (напр., при прохождении стволов штолен, строительстве метрополитенов, при бурении скважин).

Чтобы ось Г. могла свободно поворачиваться в пространстве, Г. обычно закрепляют в кольцах т. н. карданова подвеса (рис. 1), в к-ром оси внутр. и внеш. колец и ось Г. пересекаются в одной точке, наз. центром подвеса. Закреплённый в таком подвесе Г. имеет 3 степени свободы и может совершать любой поворот около центра подвеса. Если центр тяжести Г. совпадает с центром подвеса, Г. наз. уравновешенным, или астатическим. Изучение законов движения Г.- задача динамики твёрдого тела.

Рис. 1. Классический карданов подвес, а - внешнее кольцо, б - внутреннее кольцо, в - ротор.

Рис. 2. Прецессия гироскопа . Угловая скорость прецессии направлена так, что вектор собственного кинетического момента Н стремится к совмещению с вектором момента М пары, действующей на гироскоп.

Основные свойства гироскопа. Если к оси быстровращающегося свободного Г. приложить пару сил (P - F )с моментом (h - плечо силы) (рис. 2), то (против ожидания) Г. начнёт дополнительно поворачиваться не вокруг оси х , перпендикулярной к плоскости пары, а вокруг оси у , лежащей в этой плоскости и перпендикулярной к собств. оси тела z. Это дополнит. движение наз. прецессией. Прецессия Г. будет происходить по отношению к инерциалъной системе отсчета (к осям, направленным на неподвижные звёзды) с угловой скоростью

Рис 13. Гироскоп направления.

В ряде приборов используется также свойство Г. равномерно прецессировать под действием постоянно приложенных сил. Так, если посредством дополнит. груза вызвать прецессию Г. с угловой скоростью, численно равной и противоположно направленной вертикальной составляющей угловой скорости вращения Земли (где U - угловая скорость Земли, - широта места), то ось такого Г. с той или иной степенью точности будет сохранять неизменное направление относительно стран света. В течение неск. часов, пока не накопится ошибка в 1-2°, такой Г., именуемый гироазимутом, или Г. направления (рис. 13), может заменить компас (напр., на самолётах, в частности в полярной авиации, где показания магн. компаса ненадёжны). Аналогичным Г., но со значительно большим смещением центра тяжести от оси прецессии, можно определять поступат. скорость объекта, движущегося в направлении оси bb 1 , с любым ускорением (рис. 14). Если отвлечься от влияния силы тяжести, то можно считать, что на Г. действует момент переносной силы инерции Q , где т - масса Г., l - плечо. Тогда, по ф-ле (1), Г. будет прецессировать вокруг оси bb 1 с угловой скоростью . После интегрирования последнего равенства получаем , где - нач. скорость объекта. T. о., оказывается возможным определить скорость объекта v в любой момент времени по углу , на к-рый Г. повернётся к этому моменту вокруг оси bb 1 . Для этого прибор должен быть снабжён счётчиком оборотов и устройством, вычитающим из полного угла поворота угол, на к-рый Г. повернётся вследствие действия на него момента силы тяжести. Таким прибором (интегратором продольных кажущихся ускорений) определяют скорости вертик. взлёта ракеты; при этом ракета должна быть стабилизирована так, чтобы она не имела вращения вокруг своей оси симметрии.

Рис. 14. Гироскопический измеритель скорости подъема ракеты. - ускорение подъёма; g - ; P - сила тяжести, Q - сила инерции, - собственный кинетический момент.

В ряде совр. конструкций применяют т. н. поплавковый, или интегрирующий, Г. Ротор такого Г. помещён в кожух - поплавок, погружённый в жидкость (рис. 15). При вращении поплавка вокруг его оси х на Г. будет действовать момент M x вязкого трения, пропорциональный угловой скорости вращения . Благодаря этому оказывается, что если Г. сообщить принудит. вращение вокруг оси у , то угловая скорость этого вращения в соответствии с равенством (1) будет пропорциональна . В результате угол поворота поплавка вокруг оси х будет, в свою очередь, пропорционален интегралу по времени от (поэтому Г. и наз. интегрирующим). Дополнит. электрич. и электромеханич. устройства позволяют или измерять этим Г. угловую скорость, или сделать его элементом стабилизирующего устройства. В первом случае спец. электромагнитами создаётся момент относительно оси х , направленный против вращения поплавка; величина этого момента регулируется так, чтобы поплавок остановился. Тогда момент M 1 как бы заменит момент M x сил вязкого трения и, следовательно, по ф-ле (1), угловая скорость будет пропорциональна величине М 1 , определяемой по силе тока, протекающего по обмоткам электромагнита. Во втором случае, при стабилизации, напр., вокруг неподвижной оси у , корпус интегрирующего Г. размещается на платформе, к-рую может вращать вокруг оси у спец. электродвигатель (рис. 16). Для объяснения принципа стабилизации предположим, что основание, на к-ром расположены подшипники платформы, само повернётся вокруг оси у на нек-рый угол . При неработающем двигателе платформа повернётся в этом случае вместе с основанием на тот же угол , а поплавок совершит поворот вокруг оси х на угол , пропорциональный углу . Если теперь двигатель будет вращать платформу в обратном направлении до тех пор, пока поплавок не вернётся в исходное положение, то одновременно в исходное положение вернётся и платформа. Можно непрерывно управлять двигателем так, чтобы угол поворота поплавка сводился к нулю, тогда платформа окажется стабилизированной. Сочетание двух поплавковых Г. в общем подвесе с аналогично управляемыми электродвигателями приводит к стабилизации фиксированного направления, а трёх - к пространств. стабилизации, используемой, в частности, в схемах инерциальной навигации.

Рис. 15. Поплавковый интегрирующий гироскоп: а - ротор гироскопа; б - поплавок, в теле к-рого расположен подшипник оси ротора; в - поддерживающая жидкость; г - корпус; д - стальные цапфы в камневых опорах; е - датчик угла поворота поплавка относительно корпуса; ж - электромагнитное устройство, прилагающее момент вокруг оси поплавка.

Рис. 16. Стабилизация вокруг неподвижной оси посредством поплавкового гироскопа а - гироскоп-поплавок; б - усилитель, в - электродвигатель; г - платформа, д - основание.

Рис. 17. Силовая гироскопическая рама: а - собственно рама; б - гироскоп; в - спарник; г - датчик угла поворота гироскопа относительно рамы; д - усилитель сигнала датчика; е - стабилизирующий двигатель; ж - датчик момента.

В рассмотренной системе стабилизации Г. играет роль чувствит. элемента, обнаруживающего отклонения объекта от заданного положения, а возвращение в это положение производится электродвигателем, получающим соответствующий сигнал. Подобные системы гироскопич. стабилизации наз. индикаторными (стабилизаторы непрямого действия). Наряду с этим в технике применяются системы т. н. силовой гироскопич. стабилизации (стабилизаторы прямого действия), в к-рых Г. непосредственно воспринимают на себя усилия, мешающие осуществлению стабилизации, а двигатели играют вспомогат. роль, разгружая частично или полностью Г. и ограничивая тем самым углы их прецессии. Конструктивно такие системы проще индикаторных. Примером может служить одноосная двухгироскопич. рама (рис. 17); роторы находящихся в раме Г. вращаются в разные стороны. Допустим, что на раму подействует сила, стремящаяся повернуть её вокруг оси х и сообщить угловую скорость . Тогда, по правилу Жуковского, на кожух 1 начнёт действовать пара, стремящаяся совместить ось ротора с осью х . В результате Г. начнёт прецессировать вокруг оси y 2 с нек-рой угловой скоростью . Кожух 2 по той же причине будет прецессировать вокруг оси y 2 в противоположную сторону. Углы поворотов кожухов будут при этом одинаковы, т. к. кожухи связаны зубчатым сцеплением. Вследствие этой прецессии на подшипники кожуха 1 подействует новая пара, стремящаяся совместить ось ротора с осью y 1 . Такая же пара будет действовать на подшипники кожуха 2 . Моменты этих пар направлены противоположно (что следует из правила Жуковского) и стабилизируют раму, т. е. удерживают её от поворота вокруг оси х . Однако если прецессии Г. не будут ограничены, то, как видно из ф-лы (3), при повороте кожухов вокруг осей y 1 , у 2 на угол 90° стабилизация прекратится. Поэтому на оси одного из кожухов имеется датчик, регистрирующий угол поворота кожуха относительно рамы и управляющий двигателем стабилизации. Возникающий у двигателя вращающий момент направлен противоположно моменту, стремящемуся повернуть раму вокруг оси х; вследствие этого прецессия Г. прекращается. Рассмотренная рама стабилизирована по отношению к поворотам вокруг оси х . Повернуть раму вокруг любой оси, перпендикулярной х , можно беспрепятственно, но возникающий при этом гироскопич. момент может вызвать значит. давления на подшипники Г. и их кожухов. Сочетание трёх таких рам с взаимно перпендикулярными осями приводит к пространств. стабилизации (напр., искусств. спутника).

В силовых гироскопич. системах, в отличие от свободных Г., из-за больших моментов инерции стабилизируемых масс возникают весьма заметные колебат. движения типа нутаций. Должны быть приняты спец. меры для того, чтобы эти колебания были затухающими, иначе в системе возникают . В технике применяются и др. гироскопич. приборы, принципы действия к-рых основаны на свойствах Г.

Лит.: Булгаков Б. В., Прикладная теория гироскопов, 3 изд., M., 1976; Николаи E. Л., Гироскоп в кардановом подвесе, 2 изд., M., 1964; Малеев П. И., Новые типы гироскопов, Л., 1971; Магнус К., Гироскоп. Теория и применение, пер. с нем., M., 1974; Ишлинский А. Ю, Ориентация, гироскопы и инерциальная навигация, M., 1976; его же, Механика относительного движения и силы инерции, M., 1981; Климов Д. M., Харламов С. А., Динамика гироскопа в кардановом подвесе, M., 1978; Журавлев В. Ф., Климов Д. M., Волновой твердотельный гироскоп, M., 1985; Новиков Л. 3., Шаталов M. Ю., Механика динамически настраиваемых гироскопов, M., 1985.

А. Ю. Ишлинский .

Гироскоп — это такое устройство, которое способно реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчета. Простейший пример гироскопа — игрушка волчок.

Считается, что гироскоп был создан немецким астрономом и математиком Иоанном Боненбергером в 1817 году, хотя есть другие данные, в которых Боненбергер упоминается в качестве создателя устройства еще в 1813 году.

Гироскопы применяются в судоходстве, космонавтике, авиации, в бытовой технике, игрушках и т.д. Разумеется, применяется гироскоп и в мобильных устройствах.

Бытует мнение, что гироскоп — это тоже самое, что и , но это совсем не так. Если последний измеряет проекцию кажущегося ускорения, то гироскоп фиксирует положение объекта в пространстве относительно трех плоскостей. Впрочем, функции эти два устройства выполняют схожие: гироскоп отвечает за небольшие движения в любой плоскости, в то время как акселерометр — за поворот дисплея. Как бы там ни было, если в вашем девайсе устанавливаются оба этих устройства, он куда лучше и быстрее реагирует на различные движения.

Для чего нужен гироскоп?

Используется гироскоп для различных целей. К примеру, во многих устройствах есть возможность использования различных функций с помощью встряхивания. Например, потряхиванием можно ответить на звонок или переключить песню в плеере.

Разумеется, используется гироскоп и в играх. И хотя большую часть роли исполняет акселерометр, вкупе с гироскопом игра становится намного более интереснее за счет реалистичной картинки, когда вход в поворот на виртуальной машине схож с поездкой на реальном автомобиле.

Множеством интересных функций и датчиков оснащены смартфоны и другие мобильные устройства. Одним из ведущих модулей является гиродатчик или гироскоп. Диковинная новинка в девайсе, выполненная на основе микроэлектромеханической системы, сделала большой рывок в усовершенствование функционала и завоевала большую симпатию среди пользователей. Происхождение слова «гироскоп» имеет давнюю историю. Оно расшифровывается как словосочетание «круг» и «смотрю».

Родоначальником древнегреческого изречения был французский физик Леон Фуко. В XIX веке он занимался исследованием суточного вращения Земли, и этот термин подошёл для нового устройства как нельзя кстати. Гиродатчиками пользуются авиакомпании, судоходство, космонавтика. Компания Apple, производитель современных мобильных телефонов, первой взяла за основу данный функционал и внедрила его в iPhone 4. Несмотря на то, что видео ниже на английском языке, демонстрация технологии от Стив Джобса понятна без перевода.

Теперь, для того чтобы ответить на входящие звонки или полистать страницы электронной книги, достаточно только встряхнуть телефон. За счёт устройства быстро просматриваются фотографии и другие изображения, меняется музыка. Новое приложение у смартфона iPone под названием CoveFlow позволило использовать калькулятор. Теперь легко выполняются такие функции, как деление, умножение, сложение и вычитание. При повороте телефона на 90° данная функция машинально переключается на развёрнутый функционал со множеством сложных математических действий.

Наряду с легкими функциями разработчики внедрили в устройство более сложные программные обеспечения. Например, в некоторых операционных системах при помощи встряхивания телефона запускается обновление для Bluetooth или запускается специфичная программа по измерению углов наклона и уровня. Гироскоп прекрасно учитывает скорость перемещения, и определяет местоположение человека на незнакомой местности.

С технической точки зрения, гироскоп довольно сложное устройство. При его разработке, за основу взяли принцип работы акселерометра, который представляет из себя колбу с пружиной и грузом внутри. На одной стороне пружины закреплен груз, а вторая сторона пружины зафиксирована на демпфере для гашения колебания. При встряхивании (ускорении) измерительного прибора, прикрепленная масса движется и приводит в напряжение пружину.

Такие колебания можно представить в виде данных. Если расположить три таких акселерометра перпендикулярно, то можно получить представление о том, как расположен предмет в пространстве. Поскольку технически расположить такой громоздкий измерительный прибор в смартфоне невозможно, то принцип работы оставили тот же, но груз заменили инертной массой, который расположен в очень маленьком чипе. При ускорении, меняется положение инертной массы и таки образом рассчитывается положение смартфона в пространстве.

С помощью GPS-навигации на дисплее появляется карта, которая фиксирует аналогичное направление объектов при любом повороте тела. Другими словами, если вы повернулись лицом к реке, то она автоматически отобразится на карте. При развороте на 180 градусов к водоему мгновенно происходят аналогичные изменения на мониторе. С использованием этой функции упрощается ориентировка на местности. Особенно это важно людям, занимающимся активными видами отдыха.

Благодаря точному учёту скорости перемещения управление смартфоном становится более удобным и гармоничным. Зачастую используют гироскопы на Андроид любители компьютерных игр — геймеры. Уникальное устройство в девайсе молниеносно превращает картинки в реальность. Особенно правдоподобными становятся гонки, симуляторы, стрелялки, Pokemon Go.

Достаточно изменить положение смартфона и скорость поворота, то езда на виртуальном автомобиле покажется вам реальной. Герои на дисплее точно направят автомат, нацелят пушку, повернут руль, поднимут в воздух вертолёт, убьют врага. Карманные монстры не будут прыгать по виртуальной траве, а станут двигаться по настоящему миру в видимой области встроенной камеры.

Конечно, это далеко не весь перечень положительных характеристик, присущих Android смартфонам и iPhone. Перечислять приятные и удобные моменты можно бесконечно. Однако не все пользователи оценили универсальные качества по достоинству. Одни предпочли отказаться от гироскопа в новом смартфоне, другие просто отключили его. И этому есть своё объяснение.
Среди многочисленных плюсов бывают малозаметные минусы.

  1. Из недостатков следует выделить установку отдельных приложений, реагирующих с незначительным опозданием на изменения положений в пространстве. Вроде бы сущий пустяк, но наличие этого сенсора доставляет определённые неудобства пользователю смартфона. Особенно заметны недостатки при чтении электронной книги лёжа. Читающий меняет позу, в это же время, связанный с устройством гиродатчик изменяет положение странички. Приходится в срочном порядке перенастраивать её ориентацию.
  2. Производители смартфонов на своих презентациях в большинстве случаев умалчивают о наличии важного датчика. При покупке новой модели присутствие гироскопа можно обнаружить в технических характеристиках гаджета в перечне датчиков. Есть и другие способы, например, установка клиента YouTube, позволяющая быстро установить функционал. Использование приложения AnTuTu Benchmark, Sensor Sense также устанавливает встроенный гиродатчик или его отсутствие.

Современный элемент смартфона работает на постоянной основе. Это самостоятельный датчик, не требующий калибровки. Его не нужно ни включать, ни отключать. Автоматика сделает эту работу за вас. В случае если устройство отсутствует, то вы не сможете играть в виртуальную реальность. Вам просто придётся купить новый телефон со встроенными функциями.

Существует огромное количество изобретений, которые характеризуются длинной и весьма богатой историей использования в различных приборах и устройствах. Часто можно услышать название чего-либо, но даже не иметь представления о том, для чего оно предназначено. Именно так и возникает вопрос, что такое гироскоп? Стоит в нем разобраться.

Основное определение

Гироскоп представляет собой навигационный прибор, в котором в качестве основного элемента используется быстро вращающийся ротор, закрепленный таким образом, чтобы его ось вращения поворачивалась. Две рамки карданова подвеса обеспечивают три степени свободы. При отсутствии каких-либо внешних воздействий на устройство ось собственного вращения ротора сохраняет в пространстве постоянное направление. Если на него оказывает воздействие момент внешней силы, которая стремится повернуть ось собственного вращения, то она начинает свое движение не вокруг направления момента, а вокруг оси, находящейся перпендикулярно по отношению к нему.

Особенности устройства

Если говорить о том, что такое гироскоп, то стоит отметить, что в качественно сбалансированном и достаточно быстро вращающемся приборе, установленном на высокосовершенных подшипниках, с малым трением практически отсутствует момент внешних сил, поэтому устройство способно сохранять свою ориентацию в пространстве почти неизменной. Поэтому он способен указывать угол поворота основания, на котором его закрепили. Именно так впервые было наглядно продемонстрировано французским физиком Ж. Фуко. Если ограничить поворот оси специальной пружиной, то при установке прибора на который выполняет разворот, гироскоп будет деформировать пружину до тех пор, пока момент внешней силы не уравновесится. В данном случае сила растяжения или сжатия пружины будет пропорциональна угловой скорости движения летательного аппарата. По такому принципу работает авиационный указатель поворота и многие другие гироскопические приборы. Так как в подшипниках создается очень малое трение, чтобы поддерживать вращение ротора гироскопа, не требуется больших затрат энергии. Обычн, для его приведения в движения, а также для поддержания этого движения достаточно электродвигателя малой мощности либо струи сжатого воздуха.

Гироскоп: применение

Чаще всего этот прибор используется в качестве чувствительного элемента для указывающих гироскопических приборов, а также в качестве датчика угла поворота или угловой скорости для устройств, работающих под автоматическим управлением. В некоторых случаях гироскоп может послужить в качестве генератора энергии или момента силы.

На текущий момент принцип работы гироскопа позволяет активно использовать его в авиации, судоходстве и космонавтике. Почти у каждого морского судна дальнего плавания имеется гирокомпас для автоматического или ручного управления судном, а в некоторых используются и гиростабилизаторы. Система управления огнем корабельной артиллерии обычно оснащается множеством дополнительных гироскопов, которые предназначены для обеспечения стабильной системы отсчета или для измерения угловых скоростей.

Если вам понятно, что такое гироскоп, то следует понимать, что без него просто немыслимо автоматическое управление торпедами. Вертолеты и самолеты тоже обязательно оборудуются этими приспособлениями для того, чтобы давать надежную информацию о деятельности систем навигации и стабилизации. К таким приборам можно отнести авиагоризонт, гироскопический указатель поворота и крена, гировертикаль. Если рассматривать вертолет с гироскопом, то тут этот прибор может служить как в качестве указывающего устройства, так и в качестве датчика автопилота. Многие самолеты оснащены гиростабилизированными и прочим оборудованием - фотоаппаратами с гироскопами, гиросектантами, навигационными визирами. В военной авиации активно используются гироскопы в качестве составных элементов в прицелах бомбометания и воздушной стрельбы.

Применение в современных гаджетах

Итак, если рассматривать, что такое гироскоп, то следует заметить, что этот прибор активно используется не только в указанных ранее сферах. Современные смартфоны и планшеты оснащены массой дополнительных функций и модулей, при этом некоторые оказываются очень даже полезными, а иные могут мешать комфортному использованию устройства, раздражая пользователей. Одним из них является гироскоп в телефоне, что это становится понятно, когда вы будете пользоваться своим аппаратом. С одной стороны, он оказывается очень даже полезным, хотя с другой - большинство пользователей предпочитают просто отключать его.

что это?

Сначала необходимо определиться с тем, что это за устройство и каким функционалом оно характеризуется. Итак, гироскоп в телефоне - что элемент необходим для определения того, как ориентирован прибор в пространстве. В некоторых случаях этот датчик можно применить для защиты отдельных элементов устройства от падения в будущем. Фактически данный датчик предназначен для определения смены положения, а при наличии акселерометра - и ускорения при падении. Затем информация передается вычислительному блоку гаджета. При наличии определенного программного обеспечения прибор принимает решение о том, как ему следует реагировать далее на изменения, произошедшие с ним.

Для чего еще он нужен?

Итак, если с вопросом, что такое гироскоп, становится все понятно, то остается выяснить, зачем его используют в телефонах. Защита внутренностей тут не является единственной задачей. В сочетании с разнообразным софтом на него ложится целый ряд различных функций. К примеру, смартфон может использоваться для игр, в которых управление осуществляется посредством наклонов, встряхивания или поворотов прибора. Подобное управление позволяет сделать игры поистине увлекательными, благодаря чему они пользуются повышенным спросом.

Можно отметить, что продукция компании "Эппл" оснащается гироскопами, и они играют весьма значимую роль, так как к ним привязана работа многих приложений. Под него специально разработали режим, получивший название CoverFlow. Существует очень большое количество приложений, работающих в данном режиме, однако можно остановиться на нескольких, наиболее наглядно демонстрирующих его. К примеру, если на iPhone использовать калькулятор, то в портретном положении пользователю будут доступны только простые действия, а именно: сложение, вычитание, деление и умножение. Но при повороте устройства на 90 градусов все изменится. Калькулятор при этом переключается в расширенный режим, то есть инженерный, в котором функций будет доступно гораздо больше.

Если вам понятно, как работает гироскоп, то следует отметить, что его функции могут использоваться и для определения собственного местоположения на местности.

Можно просматривать на таком приборе карту местности с применением GPS-навигации, и в этом случае карта всегда будет поворачиваться в ту сторону, куда направлен ваш взгляд. Поэтому, если вы стоите лицом, к примеру, к речке, то это отобразится на карте, а если повернетесь, то изменится и положение карты. Благодаря этому ориентирование на местности значительно упрощается и может стать достаточно полезно людям, увлеченным активным отдыхом.

Проблемы с гироскопом в телефоне

Можно сказать и о недостатках, присущих гироскопам. Очень часто их отключают из-за того, что программы реагируют на изменение положения в пространстве с некоторым запозданием. К примеру, если вы решили почитать, лежа на диване, с экрана смартфона или планшета, то гироскоп и программа, связанная с ним, будут менять ориентацию страницы каждый раз, когда вы будете поворачиваться или смените позу. Это причиняет много неудобств, так как очень редко устройство способно правильно интерпретировать положение в пространстве, а ситуация усугубляется из-за запоздалой реакции программы.

Современные разновидности

Первые гироскопы были механическими. Этот вид устройств используется и сейчас, но с некоторыми усовершенствованиями, позволяющими сделать их более полезными. На данный момент существует лазерный гироскоп, который лишен недостатков, свойственным механическим. И именно такой прибор используется в современной технике.


Close